The lateral hypothalamic area controls paradoxical (REM) sleep by means of descending projections to brainstem GABAergic neurons.
نویسندگان
چکیده
It has recently been shown that the ventrolateral part of the periaqueductal gray (VLPAG) and the adjacent dorsal deep mesencephalic nucleus (dDpMe) contain GABAergic neurons gating paradoxical sleep (PS) onset by means of their projection to the glutamatergic PS-on neurons of the sublaterodorsal tegmental nucleus (SLD). To determine the mechanisms responsible for the cessation of activity of these GABAergic PS-off neurons at the onset and during PS, we combined the immunostaining of c-FOS, a marker of neuronal activation, with cholera toxin b subunit (CTb) retrograde tracing from the VLPAG/dDpMe in three groups of rats (control, PS deprived, and PS hypersomniac). We found that the lateral hypothalamic area (LH) is the only brain structure containing a very large number of neurons activated during PS hypersomnia and projecting to the VLPAG/dDpMe. We further demonstrated that 44% of these neurons express the neuropeptide melanin concentrating hormone (MCH). We then showed that bilateral injections in the LH of two inhibitory compounds, clonidine (an α-2 adrenergic agonist) and muscimol (a GABAa agonist) induce an inhibition of PS. Furthermore, after muscimol injections in the LH, the VLPAG/dDpMe contained a large number of activated neurons, mostly GABAergic, and projecting to the SLD. Altogether, our results indicate for the first time that the activation of a population of LH neurons, in part MCH containing, is necessary for PS to occur. Furthermore, our results strongly suggest that these neurons trigger PS by means of their inhibitory projection to the PS-off GABAergic neurons located in the VLPAG/dDpMe.
منابع مشابه
Localization of the GABAergic and non-GABAergic neurons projecting to the sublaterodorsal nucleus and potentially gating paradoxical sleep onset.
We recently determined in rats that iontophoretic application of bicuculline or gabazine [two GABAa antagonists] and kainic acid (a glutamate agonist) in the sublaterodorsal nucleus (SLD) induces with a very short latency a paradoxical sleep-like state. From these results, we proposed that GABAergic and glutamatergic inputs to the SLD paradoxical sleep (PS)-executive neurons gate the onset of P...
متن کاملTurning a Negative into a Positive: Ascending GABAergic Control of Cortical Activation and Arousal
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain. Recent technological advances have illuminated the role of GABAergic neurons in control of cortical arousal and sleep. Sleep-promoting GABAergic neurons in the preoptic hypothalamus are well-known. Less well-appreciated are GABAergic projection neurons in the brainstem, midbrain, hypothalamus, and basal forebra...
متن کاملHypocretin increases impulse flow in the septohippocampal GABAergic pathway: implications for arousal via a mechanism of hippocampal disinhibition.
Hypocretins (Hcrts), or orexins, are a recently described set of hypothalamic peptides that have been implicated in feeding, neuroendocrine regulation, sleep-wakefulness, and disorders of sleep, such as narcolepsy. Hcrt-containing neurons, which are located exclusively in the lateral hypothalamic area, provide a dense innervation to the medial septum/diagonal band of Broca (MSDB), a sleep-assoc...
متن کاملSynaptic interactions between perifornical lateral hypothalamic area, locus coeruleus nucleus and the oral pontine reticular nucleus are implicated in the stage succession during sleep-wakefulness cycle
The perifornical area in the posterior lateral hypothalamus (PeFLH) has been implicated in several physiological functions including the sleep-wakefulness regulation. The PeFLH area contains several cell types including those expressing orexins (Orx; also known as hypocretins), mainly located in the PeF nucleus. The aim of the present study was to elucidate the synaptic interactions between Orx...
متن کاملModulation of cortical activation and behavioral arousal by cholinergic and orexinergic systems.
Multiple neuronal systems contribute to the promotion and maintenance of the wake state, which is characterized by cortical activation and behavioral arousal. Using predominantly glutamate as a neurotransmitter, neurons within the reticular formation of the brainstem give rise to either ascending projections into the forebrain or descending projections into the spinal cord to promote through re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 32 47 شماره
صفحات -
تاریخ انتشار 2012